首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   8篇
  国内免费   5篇
测绘学   2篇
大气科学   8篇
地球物理   39篇
地质学   58篇
海洋学   51篇
天文学   48篇
自然地理   9篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   7篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   9篇
  2011年   7篇
  2010年   13篇
  2009年   9篇
  2008年   17篇
  2007年   23篇
  2006年   11篇
  2005年   8篇
  2004年   10篇
  2003年   4篇
  2002年   8篇
  2001年   8篇
  2000年   8篇
  1999年   4篇
  1998年   7篇
  1997年   2篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1976年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有215条查询结果,搜索用时 265 毫秒
211.
Abstract The Kokchetav Massif of northern Kazakhstan is unique because of the abundant occurrence of microdiamond inclusions in garnet, zircon and clinopyroxene of metasediments. In order to determine precise pressure–temperature (P–T) conditions, we have systematically investigated mineral inclusions and the compositions of major silicates in Ti–clinohumite–garnet peridotite and diamond-grade eclogite from Kumdy–Kol. It was found that garnet peridotites from Kumdy–Kol contain assemblages of garnet, olivine, Ti–clinohumite and ilmenite. The garnet contains inclusions that are indicative of both ultrahigh pressure (UHP) and retrograde conditions. Inclusions of hydrous phases such as chlorite, amphibole and zoisite were formed at the post-UHP stage. The study also found that eclogite from Kumdy–Kol contains albite–augite symplectites after omphacitic pyroxene. The core of pyroxene (sodic augite) contains high K2O (up to 1wt%; average 0.24wt%). Phengite is included in the core. Applying the K2O-in-augite geobarometry, which is based on recent experiments, and the garnet–clinopyroxene (Grt–Cpx) geothermometer for peak metamorphism, the eclogites yield P–T estimates of > 6 GPa and > 1000 °C, and the diamond-grade eclogites yield lower temperature estimates at 900–1000 °C and 5 GPa.  相似文献   
212.
基于SMP准则的土的平面应变强度公式   总被引:31,自引:6,他引:25  
罗汀  姚仰平  松冈元 《岩土力学》2000,21(4):390-393
基于SMP准则和佐武的平面变变条件,推导了磨擦材料的平面就变强度公式。通过引入粘结应力σ0,推导出适应于C-Φ材料的平面应变强度公式。各种试验结果证明了所提强度公式是合理的。  相似文献   
213.
214.
The Paleo‐Kuril Arc in the eastern Hokkaido region of Japan, the westernmost part of the Kuril Arc in the northwestern Pacific region, shows a tectonic bent structure. This has been interpreted, using paleomagnetic data, to be the result of block rotations in the Paleo‐Kuril Arc. To understand the timing and origin of this tectonic bent structure in the Paleo‐Kuril arc‐trench system, paleomagnetic surveys and U–Pb radiometric dating were conducted in the Paleogene Urahoro Group, which is distributed in the Shiranuka‐hill region, eastern Hokkaido. The U–Pb radiometric dating indicated that the Urahoro Group was deposited at approximately 39 Ma. Paleomagnetic analysis of the Urahoro Group suggested that the Shiranuka‐hill region experienced a 28° clockwise rotation with respect to East Asia. The degree of clockwise rotation implied from the Urahoro Group is smaller than that of the underlying Lower Eocene Nemuro Group (62°) but larger than that of the overlying Onbetsu Group (?9°). It is thus suggested that the Shiranuka‐hill region experienced a clockwise rotation of approximately 34° between the deposition of the Nemuro and Urahoro Groups (50–39 Ma), and a 38° clockwise rotation between the deposition of the Urahoro and Onbetsu Groups (39–34 Ma). The origin of the curved tectonic belt of the Paleo‐Kuril Arc was previously explained by the opening of the Kuril Basin after 34 Ma. The age constraint for the rotational motion of the Shiranuka‐hill region in this study contradicts this hypothesis. Consequently, it is suggested that the process of arc–arc collision induced the bent structure of the western Paleo‐Kuril Arc.  相似文献   
215.
Melt‐origin pseudotachylyte is the most reliable seismogenic fault rock. It is commonly believed that pseudotachylyte generation is rare in the plate subduction zone where interstitial fluids are abundant and can trigger dynamic fault‐weakening mechanisms such as thermal pressurization. Some recent studies, however, have discovered pseudotachylyte‐bearing faults in exhumed ancient accretionary complexes, indicating that frictional melting also occurrs during earthquakes in subduction zones. To clarify the pseudotachylyte generation mechanism and the variation of slip behavior in the plate subduction zone, a pseudotachylyte found in the exhumed fossil accretionary complex (the Shimanto Belt, Nobeoka, Japan) was re‐focused and microscopic and three‐dimensional observations of the pseudotachylyte‐bearing fault were performed based on optical, electron, and X‐ray microscope images. Based on the patterns contained in the fragment, the pseudotachylyte is divided into four domains, although no clear domain boundaries or layering structures are not found. Three‐dimensional observation also suggests that the pseudotachylyte were fragmented or isolated by cataclasite or carbonate breccia. The pseudotachylyte was rather injected into the surrounding carbonate breccia, which is composed of angular fragments of the host rock and a matrix of tiny crystalline carbonate. The pseudotachylyte volume was extracted from the X‐ray microscope image and the heat abundance consumed by the pseudotachylyte generation was estimated at 2.18 MJ/m2, which can be supplied during a slip of approximately 0.5 m. These observations and calculations, together with the results of the previous investigations, suggest hydrofracturing and rapid carbonate precipitation that preceded or accompanied the frictional melting. Dynamic hydrofracturing during a slip can be caused by rapid fluid pressurization, and can induce abrupt decrease in fluid pressure while drastically enhancing the shear strength of the shear zone. Consequently, frictional heating would be reactivated and generate the pseudotachylyte. These deformation processes can explain pseudotachylyte generation in hydrous faults with the impermeable wall rock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号